Package: VeryLargeIntegers 0.2.1

VeryLargeIntegers: Store and Operate with Arbitrarily Large Integers

Multi-precision library that allows to store and operate with arbitrarily big integers without loss of precision. It includes a large list of tools to work with them, like: - Arithmetic and logic operators - Modular-arithmetic operators - Computer Number Theory utilities - Probabilistic primality tests - Factorization algorithms - Random generators of diferent types of integers.

Authors:Javier Leiva Cuadrado

VeryLargeIntegers_0.2.1.tar.gz
VeryLargeIntegers_0.2.1.zip(r-4.5)VeryLargeIntegers_0.2.1.zip(r-4.4)VeryLargeIntegers_0.2.1.zip(r-4.3)
VeryLargeIntegers_0.2.1.tgz(r-4.4-x86_64)VeryLargeIntegers_0.2.1.tgz(r-4.4-arm64)VeryLargeIntegers_0.2.1.tgz(r-4.3-x86_64)VeryLargeIntegers_0.2.1.tgz(r-4.3-arm64)
VeryLargeIntegers_0.2.1.tar.gz(r-4.5-noble)VeryLargeIntegers_0.2.1.tar.gz(r-4.4-noble)
VeryLargeIntegers_0.2.1.tgz(r-4.4-emscripten)VeryLargeIntegers_0.2.1.tgz(r-4.3-emscripten)
VeryLargeIntegers.pdf |VeryLargeIntegers.html
VeryLargeIntegers/json (API)

# Install 'VeryLargeIntegers' in R:
install.packages('VeryLargeIntegers', repos = c('https://jleivacuadrado.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.98 score 1 packages 32 scripts 264 downloads 46 exports 1 dependencies

Last updated 2 years agofrom:8c547054cf. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-win-x86_64OKNov 03 2024
R-4.5-linux-x86_64OKNov 03 2024
R-4.4-win-x86_64OKNov 03 2024
R-4.4-mac-x86_64OKNov 03 2024
R-4.4-mac-aarch64OKNov 03 2024
R-4.3-win-x86_64OKNov 03 2024
R-4.3-mac-x86_64OKNov 03 2024
R-4.3-mac-aarch64OKNov 03 2024

Exports:as.vliasnumericbinomcount1bitsdivisordivmoddivp2exteuclidfactorsfactvliFibonaccigcdinvmodis.Fibonacciis.perfectpowis.primeis.primeFis.primeMRis.primeSSis.vliJacobilcmulLegendrelog10remlogelogremmulmodnextprimenthFibonacciperfectpowphiPipowmodprimesprimescountrootkrootkremrvlibinrvlidigitsrvlinegbinrvliprimervliunifsqrtremsubmodsummodvli

Dependencies:Rcpp

Readme and manuals

Help Manual

Help pageTopics
Very Large Integers Basics01. Basics as.character.vli as.integer.vli as.vli as.vli.character as.vli.default as.vli.numeric as.vli.vli asnumeric asnumeric.default asnumeric.vli is.vli print.vli vli
Basic Arithmetic and Logical Operators for vli Objects!=.vli %%.vli *.vli +.vli -.vli /.vli 02. Arithmetic and logic <.vli <=.vli ==.vli >.vli >=.vli abs.vli ^.vli
Integer roots for vli Objects03. Roots rootk rootk.default rootk.numeric rootk.vli rootkrem rootkrem.default rootkrem.numeric rootkrem.vli sqrt.vli sqrtrem sqrtrem.default sqrtrem.numeric sqrtrem.vli
Integer Logarithms for vli Objects04. Logarithms log.vli log10.vli log10rem log10rem.default log10rem.numeric log10rem.vli loge loge.default loge.numeric loge.vli logrem logrem.default logrem.numeric logrem.vli
Efficient Division by a Power of 205. Efficent division by a power of 2 divp2 divp2.default divp2.numeric divp2.vli
Binomial Coefficients for vli Objects06. Binomial coefficients binom binom.default binom.numeric binom.vli
Factorial of a vli Object07. Factorial factvli factvli.default factvli.numeric factvli.vli
Basic Modular-Arithmetic Operators for vli Objects08. Modular-arithmetic divmod divmod.default divmod.numeric divmod.vli invmod invmod.default invmod.numeric invmod.vli mulmod mulmod.default mulmod.numeric mulmod.vli powmod powmod.default powmod.numeric powmod.vli submod submod.default submod.numeric submod.vli summod summod.default summod.numeric summod.vli
Greatest Common Divisor for vli Objects09. Greatest common divisor gcd gcd.default gcd.numeric gcd.vli
Least Common Multiple for vli Objects10. Least common multiple lcmul lcmul.default lcmul.numeric lcmul.vli
Extended Euclidean Algorithm for vli Objects11. Extended Euclidean algorithm exteuclid exteuclid.default exteuclid.numeric exteuclid.vli
Perfect Power Tools for vli Objects12. Perfect power is.perfectpow is.perfectpow.default is.perfectpow.numeric is.perfectpow.vli perfectpow perfectpow.default perfectpow.numeric perfectpow.vli
Legrendre's Formula for vli Objects13. Legrendre's Formula Legendre Legendre.default Legendre.numeric Legendre.vli
Finding a Random Divisor of a vli Object14. Finding a random divisor divisor divisor.default divisor.numeric divisor.vli
Factorization of vli Objects15. Factorization factors factors.default factors.numeric factors.vli
Computation of the Jacobi Symbol for vli Objects16. Jacobi Symbol Jacobi Jacobi.default Jacobi.numeric Jacobi.vli
Euler's Phi Function for vli Objects17. Euler's phi function phi phi.default phi.numeric phi.vli
Probabilistic Primality Tests for vli Objects18. Probabilistic primality tests is.prime is.primeF is.primeF.default is.primeF.numeric is.primeF.vli is.primeMR is.primeMR.default is.primeMR.numeric is.primeMR.vli is.primeSS is.primeSS.default is.primeSS.numeric is.primeSS.vli
Finding All Primes Up to a Given Bound19. Finding all primes primes primes.default primes.numeric primes.vli
Next Prime Number20. Next prime number nextprime nextprime.default nextprime.numeric nextprime.vli
Pi Function Approximation for vli Objects21. Pi function Pi Pi.default Pi.numeric Pi.vli
Counting the Number of Primes Up to a Given Bound22. Counting the number of primes primescount primescount.default primescount.numeric primescount.vli
Fibonacci Numbers Tools for vli Objects23. Fibonacci numbers Fibonacci Fibonacci.default Fibonacci.numeric is.Fibonacci is.Fibonacci.default is.Fibonacci.numeric is.Fibonacci.vli nthFibonacci nthFibonacci.default nthFibonacci.numeric nthFibonacci.vli
Random Generators of vli Objects24. Random generators rvlibin rvlibin.default rvlibin.numeric rvlibin.vli rvlidigits rvlinegbin rvlinegbin.default rvlinegbin.numeric rvlinegbin.vli rvliprime rvliprime.default rvliprime.numeric rvliprime.vli rvliunif rvliunif.default rvliunif.numeric rvliunif.vli
Counting the Number of 1-Bits in vli Objects25. Counting 1 bits count1bits count1bits.default count1bits.numeric count1bits.vli