Package: VeryLargeIntegers 0.2.1
VeryLargeIntegers: Store and Operate with Arbitrarily Large Integers
Multi-precision library that allows to store and operate with arbitrarily big integers without loss of precision. It includes a large list of tools to work with them, like: - Arithmetic and logic operators - Modular-arithmetic operators - Computer Number Theory utilities - Probabilistic primality tests - Factorization algorithms - Random generators of diferent types of integers.
Authors:
VeryLargeIntegers_0.2.1.tar.gz
VeryLargeIntegers_0.2.1.zip(r-4.5)VeryLargeIntegers_0.2.1.zip(r-4.4)VeryLargeIntegers_0.2.1.zip(r-4.3)
VeryLargeIntegers_0.2.1.tgz(r-4.4-x86_64)VeryLargeIntegers_0.2.1.tgz(r-4.4-arm64)VeryLargeIntegers_0.2.1.tgz(r-4.3-x86_64)VeryLargeIntegers_0.2.1.tgz(r-4.3-arm64)
VeryLargeIntegers_0.2.1.tar.gz(r-4.5-noble)VeryLargeIntegers_0.2.1.tar.gz(r-4.4-noble)
VeryLargeIntegers_0.2.1.tgz(r-4.4-emscripten)VeryLargeIntegers_0.2.1.tgz(r-4.3-emscripten)
VeryLargeIntegers.pdf |VeryLargeIntegers.html✨
VeryLargeIntegers/json (API)
# Install 'VeryLargeIntegers' in R: |
install.packages('VeryLargeIntegers', repos = c('https://jleivacuadrado.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:8c547054cf. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 03 2024 |
R-4.5-win-x86_64 | OK | Nov 03 2024 |
R-4.5-linux-x86_64 | OK | Nov 03 2024 |
R-4.4-win-x86_64 | OK | Nov 03 2024 |
R-4.4-mac-x86_64 | OK | Nov 03 2024 |
R-4.4-mac-aarch64 | OK | Nov 03 2024 |
R-4.3-win-x86_64 | OK | Nov 03 2024 |
R-4.3-mac-x86_64 | OK | Nov 03 2024 |
R-4.3-mac-aarch64 | OK | Nov 03 2024 |
Exports:as.vliasnumericbinomcount1bitsdivisordivmoddivp2exteuclidfactorsfactvliFibonaccigcdinvmodis.Fibonacciis.perfectpowis.primeis.primeFis.primeMRis.primeSSis.vliJacobilcmulLegendrelog10remlogelogremmulmodnextprimenthFibonacciperfectpowphiPipowmodprimesprimescountrootkrootkremrvlibinrvlidigitsrvlinegbinrvliprimervliunifsqrtremsubmodsummodvli
Dependencies:Rcpp
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Very Large Integers Basics | 01. Basics as.character.vli as.integer.vli as.vli as.vli.character as.vli.default as.vli.numeric as.vli.vli asnumeric asnumeric.default asnumeric.vli is.vli print.vli vli |
Basic Arithmetic and Logical Operators for vli Objects | !=.vli %%.vli *.vli +.vli -.vli /.vli 02. Arithmetic and logic <.vli <=.vli ==.vli >.vli >=.vli abs.vli ^.vli |
Integer roots for vli Objects | 03. Roots rootk rootk.default rootk.numeric rootk.vli rootkrem rootkrem.default rootkrem.numeric rootkrem.vli sqrt.vli sqrtrem sqrtrem.default sqrtrem.numeric sqrtrem.vli |
Integer Logarithms for vli Objects | 04. Logarithms log.vli log10.vli log10rem log10rem.default log10rem.numeric log10rem.vli loge loge.default loge.numeric loge.vli logrem logrem.default logrem.numeric logrem.vli |
Efficient Division by a Power of 2 | 05. Efficent division by a power of 2 divp2 divp2.default divp2.numeric divp2.vli |
Binomial Coefficients for vli Objects | 06. Binomial coefficients binom binom.default binom.numeric binom.vli |
Factorial of a vli Object | 07. Factorial factvli factvli.default factvli.numeric factvli.vli |
Basic Modular-Arithmetic Operators for vli Objects | 08. Modular-arithmetic divmod divmod.default divmod.numeric divmod.vli invmod invmod.default invmod.numeric invmod.vli mulmod mulmod.default mulmod.numeric mulmod.vli powmod powmod.default powmod.numeric powmod.vli submod submod.default submod.numeric submod.vli summod summod.default summod.numeric summod.vli |
Greatest Common Divisor for vli Objects | 09. Greatest common divisor gcd gcd.default gcd.numeric gcd.vli |
Least Common Multiple for vli Objects | 10. Least common multiple lcmul lcmul.default lcmul.numeric lcmul.vli |
Extended Euclidean Algorithm for vli Objects | 11. Extended Euclidean algorithm exteuclid exteuclid.default exteuclid.numeric exteuclid.vli |
Perfect Power Tools for vli Objects | 12. Perfect power is.perfectpow is.perfectpow.default is.perfectpow.numeric is.perfectpow.vli perfectpow perfectpow.default perfectpow.numeric perfectpow.vli |
Legrendre's Formula for vli Objects | 13. Legrendre's Formula Legendre Legendre.default Legendre.numeric Legendre.vli |
Finding a Random Divisor of a vli Object | 14. Finding a random divisor divisor divisor.default divisor.numeric divisor.vli |
Factorization of vli Objects | 15. Factorization factors factors.default factors.numeric factors.vli |
Computation of the Jacobi Symbol for vli Objects | 16. Jacobi Symbol Jacobi Jacobi.default Jacobi.numeric Jacobi.vli |
Euler's Phi Function for vli Objects | 17. Euler's phi function phi phi.default phi.numeric phi.vli |
Probabilistic Primality Tests for vli Objects | 18. Probabilistic primality tests is.prime is.primeF is.primeF.default is.primeF.numeric is.primeF.vli is.primeMR is.primeMR.default is.primeMR.numeric is.primeMR.vli is.primeSS is.primeSS.default is.primeSS.numeric is.primeSS.vli |
Finding All Primes Up to a Given Bound | 19. Finding all primes primes primes.default primes.numeric primes.vli |
Next Prime Number | 20. Next prime number nextprime nextprime.default nextprime.numeric nextprime.vli |
Pi Function Approximation for vli Objects | 21. Pi function Pi Pi.default Pi.numeric Pi.vli |
Counting the Number of Primes Up to a Given Bound | 22. Counting the number of primes primescount primescount.default primescount.numeric primescount.vli |
Fibonacci Numbers Tools for vli Objects | 23. Fibonacci numbers Fibonacci Fibonacci.default Fibonacci.numeric is.Fibonacci is.Fibonacci.default is.Fibonacci.numeric is.Fibonacci.vli nthFibonacci nthFibonacci.default nthFibonacci.numeric nthFibonacci.vli |
Random Generators of vli Objects | 24. Random generators rvlibin rvlibin.default rvlibin.numeric rvlibin.vli rvlidigits rvlinegbin rvlinegbin.default rvlinegbin.numeric rvlinegbin.vli rvliprime rvliprime.default rvliprime.numeric rvliprime.vli rvliunif rvliunif.default rvliunif.numeric rvliunif.vli |
Counting the Number of 1-Bits in vli Objects | 25. Counting 1 bits count1bits count1bits.default count1bits.numeric count1bits.vli |